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A Finite-Time Consensus
Framework Over Time-Varying
Graph Topologies With
Temporal Constraints
Finite-time consensus has attracted significant research interest due to its wide applica-
tions in multiagent systems. Various results have been developed to enable multiagent
systems to complete desired tasks in finite-time. However, most existing results in the lit-
erature can only ensure finite-time consensus without considering temporal constraints,
where the time used to achieve consensus cannot be preset arbitrarily and is generally
determined by the system initial conditions, prohibiting its application in time-sensitive
tasks. Motivated to achieve consensus within a desired time frame, user-specified finite-
time consensus is developed in the present work for a multiagent system to ensure consen-
sus at a prespecified time instant. The interaction among agents (e.g., communication
and information exchange) is modeled as a time-varying graph, where each edge is asso-
ciated with a time-varying weight representing the time-varying interaction between
neighboring agents. Consensus over such time-varying graph is then proven based on a
time transformation and is guaranteed to be completed within a prespecified time frame.
To demonstrate the developed framework, finite-time rendezvous of a multiagent system
is considered as an example application, where agents with limited communication capa-
bilities are desired to meet at a common location at a preset time instant with constraints
on preserving global network connectivity. A numerical simulation is provided to
demonstrate the efficiency of the developed result. [DOI: 10.1115/1.4035612]

1 Introduction

Consensus has attracted significant research attention due to its
wide applications in rendezvous and flocking problems [1–3], dis-
tributed sensing and computation [4–6], and formation control
[7–9], to name a few. A comprehensive review of consensus prob-
lem is provided in Refs. [10] and [11]. Although numerous results
have been developed to achieve consensus, few existing results in
the literature consider completing consensus with temporal con-
straints (i.e., completing consensus within a desired time frame).
However, practical applications are generally time-sensitive. For
instance, the environment search algorithm developed in Ref. [12]
depends on the completion of a consensus-based approximation at
each iteration and other applications such as consensus-based res-
cue, surveillance, and target tracking all demand-ensured consen-
sus within a short period. Therefore, achieving consensus within a
desired finite-time frame is a problem of wide interest.

As a particular class of consensus problems, finite-time consen-
sus has received considerable research effort recently. In
Ref. [13], finite-time convergence is guaranteed by using the nor-
malized and signed gradient descent flows of a differential func-
tion. Finite-time semistability for dynamical systems is introduced
and applied for network consensus problems in Ref. [14]. In Ref.
[15], consensus problem is investigated for multiagent systems,
where only sign information of the relative states between the
neighboring agents is used to achieve the finite-time convergence.
In Ref. [16], finite-time consensus with respect to a monotonic
function is developed for a group of kinematic agents with a time-

varying topology to reach the weighted average of their initial val-
ues. The finite-time consensus is developed for nonlinear multi-
agent systems under a general setting of directed and switching
topologies in Ref. [17]. Finite-time decentralized formation track-
ing of single-integrator multiagent systems is investigated in Refs.
[18] and [19]. The finite-time formation control is then extended
to consider multiagent systems with double-integrator dynamics
in Ref. [20] and multiple nonholonomic mobile robots in
Ref. [21]. Finite-time consensus is ensured in the aforementioned
results of Refs. [13–21]; however, only an upper bound of the con-
vergence time is developed in those results. Such upper bounds
typically depend on the initial conditions of the system and cannot
be preset arbitrarily, which indicates that the consensus cannot be
ensured within an arbitrary-desired time frame.

In practice, completing tasks within a given time frame is para-
mount in various applications. Example applications include
launching munitions from different locations with the objective of
simultaneous target arrival at a user-specified time instant or
reconfiguring the formation of unmanned aerial vehicles within a
given time frame to switch tasks between surveillance and target
tracking. It is worth pointing out that the results developed in
Refs. [13–21] are not applicable to such applications due to their
uncontrollable convergence time. Motivated to achieve consensus
at any preset time, linear time-varying feedback control protocols
are developed in the works of Refs. [22–25] to achieve consensus,
containment control, and circle formation within a desired time
frame. However, the results developed in Refs. [22–25] are only
limited to time-invariant interaction graphs. Since mission opera-
tion within dynamic and complex environments can result in
time-varying interaction and complicated coordination between
agents, achieving consensus among agents at a preset time instant
over such time-varying graphs could be very challenging.

A user-specified finite-time consensus is developed in the
present work for a multiagent system to ensure consensus at a
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prespecified time instant. The interaction among agents (e.g.,
communication and information exchange) is modeled as a time-
varying graph, where each edge is associated with a time-varying
weight representing the time-varying interaction between neigh-
boring agents. Consensus over such time-varying graph is then
proven based on a time transformation and is guaranteed to be
completed within a prespecified time frame. When considering
time-varying graphs, the development of finite-time consensus
can be more challenging. The stability analysis tools such as
examining the eigenvalues of the Laplacian matrix of linear time-
invariant systems in Refs. [22–25] are not applicable, since nega-
tive eigenvalues of linear time-varying systems does not indicate
stability as discussed in Ref. [26, Chap. 4.6]. In addition, the con-
sensus results over linear time-invariant graphs developed in
Refs. [22–25] can be considered as a particular case of our work.
In the companion paper [27], the current result is then generalized
to dynamically perform cooperative engagement in the presence
of unknown but bounded velocity of a target. However, different
from Ref. [27] where the interagent interaction is modeled as a
time-invariant graph, the current result is applicable to time-
varying weighted graphs. To demonstrate the developed frame-
work, finite-time rendezvous of a multiagent system is considered
as an example application in this work, where agents are assumed
to have limited communication capabilities (i.e., two agents can
only communicate and exchange information within a certain dis-
tance). The agents are tasked to arrive at a common destination at
a prespecified time instant, while preserving global network
connectivity during rendezvous. Representative results on preser-
vation of network connectivity include Refs. [28–31]. However,
few existing results ensure rendezvous within a prespecified time
frame while preserving network connectivity. A numerical simu-
lation is provided to demonstrate the developed result. It is worth
pointing out that the developed user-specified finite-time consen-
sus is not limited to rendezvous, and it can be easily extended
for applications such as flocking, formation control, and other
collective tasks.

2 Preliminaries

2.1 Graph Theory. When a network of N agents is tasked to
cooperatively perform collective tasks, the interagent interaction
(e.g., information exchange) is generally modeled as a
time-varying graph GðtÞ ¼ ðV; EðtÞÞ, where the set of vertices
V ¼ f1;…;Ng represents the agents, and the set of edges
EðtÞ � V � V denotes the interaction between agents. The edge
ði; jÞ 2 E can be either directed or undirected. An undirected edge
(i, j) indicates that agent i; j 2 V are able to exchange information
with each other, while a directed edge (i, j) indicates that only
agent j can receive information from agent i, but not vice versa.
Each edge (j, i) is associated with a time-varying weight aij(t) rep-
resenting how agent i evaluates the information received from
agent j at t. It is assumed that 0� aij(t)� amax for any i; j 2 V,
where amax 2 Rþ is a finite-positive constant. The positive weight
aij(t)> 0 indicates that there exists an edge (j, i) in EðtÞ, and aij¼ 0
otherwise. Since aij(t) can vary between 0 and amax, the time-
varying weights {aij(t)} can reflect not only the time-varying
interagent interaction but also instantaneous link creation (i.e.,
aij(t)> 0 with aijðt�Þ ¼ 0) or link failure (i.e., aij(t)¼ 0 with
aijðt�Þ > 0) in GðtÞ.

The set of neighboring agents from which agent i can receive

information from is defined as N iðtÞ¢fj 2 Vjðj; iÞ 2 EðtÞg. The

adjacency matrix is defined as AðtÞ¢½aijðtÞ� 2 RN�N and the

Laplacian matrix LðtÞ 2 RN�N of graph G is defined as

LðtÞ¢DðtÞ � AðtÞ, where DðtÞ¢diagfd1;…; dNg is a diagonal
matrix with di ¼

P
j2N i

aijðtÞ for 8i 2 V. An undirected graph is

connected if there exists a path connecting any two nodes. An out-
tree is a directed graph where every node has only one parent
except for one node, called the root, which has no parent.

An oriented spanning tree is a directed subgraph that contains
every node of G.

2.2 Consensus Model. Consider a class of linear time-
varying systems

_xðtÞ ¼ AðtÞxðtÞ (1)

where xðtÞ ¼ ½x1ðtÞ;…; xmðtÞ�T 2 Rm denotes an m-dimensional
system state, and AðtÞ 2 Rm�m is a state transition matrix. The
consensus, i.e., x1 ¼ � � � ¼ xm as t ! 1, is established based on
the following result.

LEMMA 1. Consider the linear time-varying system in Eq. (1)
and a Lyapunov function VðxÞ ¼ maxf x1;…; xm g �
minf x1;…; xm g [32]. If the time-varying matrix A(t) is a piece-
wise continuous function of time with bounded elements, A(t) is a
Metzler matrix3 with zero row sums, and the time-varying graph
corresponding to A(t) is connected when an undirected graph is
considered or has a spanning tree when a directed graph is con-
sidered, then _V � 0 for all t� 0 and consensus is achieved expo-
nentially fast, i.e., x1ðtÞ ¼ � � � ¼ xmðtÞ as t!1.

Most consensus results developed in the literature can be con-
sidered as a straightforward outcome of Lemma 1. For instance,
consider a network of N agents whose interaction graph is mod-
eled by the time-varying undirected graph GðtÞ described
in Sec. 2.1. Classical consensus protocol indicates that each agent
i updates its states xi 2 R according to _xiðtÞ ¼ �

P
j2N i

aijðtÞðxiðtÞ � xjðtÞÞ, which can be written in a compact form as
_XðtÞ ¼ �LðtÞXðtÞ, where XðtÞ ¼ ½x1ðtÞ;…; xNðtÞ�T, and LðtÞ is the

Laplacian matrix associated with the graph GðtÞ. Since �LðtÞ is a
Metzler matrix with zero sums, if provided that GðtÞ is connected,
the states are ensured to achieve consensus, i.e., x1 ¼ � � � ¼ xN as
t!1, based on Lemma 1.

3 User-Defined Finite-Time Consensus

Motivated to achieve consensus within a desired time frame,
the exponential consensus for networked systems in Lemma 1 is
generalized in this section to a user-specified finite-time
consensus:

DEFINITION 1. (User-Specified Finite-Time Consensus) Consider
the networked system in Eq. (1) and a desired convergence time tf
� (0,þ1). The networked system is said to achieve the user-
specified finite-time consensus, if the consensus is achieved within
the desired time frame tf, i.e., x1ðtÞ ¼ � � � ¼ xmðtÞ as t! tf.

To facilitate the convergence analysis of the finite-time
consensus, time transformation will be used in the subsequent
development.

LEMMA 2. Let #ðtÞ denote a solution of the differential equation
_x ¼ f ðt; xÞ with the initial value x0(t0) [34]. The time transforma-
tion t¼ k(s) with a strictly increasing continuously differentiable
function k and the definition wðsÞ ¼ #ðtÞ lead to

w0ðsÞ ¼ k0ðsÞf ðkðsÞ;wðsÞÞ

with wðk�1ðt0ÞÞ ¼ x0, where w0ðsÞ ¼ ðdwðsÞ=dsÞ and k0ðsÞ
¼ ðdkðsÞ=dsÞ.

THEOREM 1. Consider a variant of the linear time-varying system
in Eq. (1) as

_xðtÞ ¼ uiðtÞ (2)

where the control input uiðtÞ ¼ ðc=ðtf � tÞÞAðtÞxðtÞ and c 2 Rþ is

a constant control gain, and tf 2 Rþ is the user-specified consen-
sus time. If A(t) is a piecewise continuous function of time with
bounded elements, A(t) is a Metzler matrix with zero row sums,

3Matrices with positive or zero off-diagonal entries are generally referred to as
Metzler matrices [33].
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and the time-varying graph corresponding to A(t) is uniformly
connected, the consensus is achieved within a desired finite time,
i.e., x1ðtÞ ¼ � � � ¼ xmðtÞ as t! tf.

Proof. To prove the finite-time consensus, i.e., x1ðtÞ ¼ � � � ¼
xmðtÞ as t ! tf, a time transformation based on Lemma 2 is
applied to facilitate the convergence analysis. Since the time t is
mapped onto [0, tf], the time transformation is designed as kðsÞ
¼ tf ð1� e�sÞ with s � [0,þ1), where k(s) is a strictly increasing
and continuously differentiable function with k(0)¼ 0 and
lims!1 kðsÞ ¼ tf . Applying the time transformation t ¼ kðsÞ
¼ tf ð1� e�sÞ yields

dx k sð Þð Þ
dk

¼ c

tf � k sð Þ
A k sð Þð Þx k sð Þð Þ

Using the fact that ðdxðkðsÞÞ=dsÞ ¼ ðdxðkðsÞÞ=dkÞðdk=dsÞ

dx k sð Þð Þ
ds

¼ dk
ds

c

tf � k sð Þ
A k sð Þð Þx k sð Þð Þ (3)

Define wðsÞ¢xðkðsÞÞ and vðsÞ¢AðkðsÞÞ. Equation (3) can be sim-
plified as

w0 sð Þ ¼ k0 sð Þ
c

tf � k sð Þ
v sð Þw sð Þ

where w0ðsÞ ¼ ðdwðsÞ=dsÞ and k0ðsÞ ¼ ðdkðsÞ=dsÞ. Using k0ðsÞ
¼ tf e

�s yields

w0 sð Þ ¼ tf e
�s c

tf � tf 1� e�sð Þ v sð Þw sð Þ

¼ cv sð Þw sð Þ (4)

Since k(s) is a strictly monotonically increasing function, v(s)
preserves the properties of A(t) described in Lemma 1, i.e., v(s) is
a piecewise continuous function of s with bounded elements,
Metzler matrix with zero sums and the time-varying graph
corresponding to v(s) is uniformly connected. Based on Lemma 1
and the fact that c is a positive constant, it concludes from Eq. (4)
that w1ðsÞ ¼ � � � ¼ wmðsÞ as s! þ1, which is equivalent to
x1ðtÞ ¼ � � � ¼ xmðtÞ as t! tf . �

Remark 1. Using the fact that

dw sð Þ
ds
¼ dx k sð Þð Þ

ds
¼ dx k sð Þð Þ

dk
dk
ds

and the definition of ðdxðkðsÞÞ=dkÞ ¼ ðdxðtÞ=dtÞ and ðdk=dsÞ ¼
ðtf =esÞ yields

w0 sð Þ ¼
dx tð Þ

dt

tf
es

Based on Lemma 1, w0ðsÞ ! 0 as s ! þ1 from Eq. (4), since

v(s) is a Metzler matrix with zero sums. The fact that w0ðsÞ ! 0
and ðdk=dsÞ ! 0 as s! þ1 indicates that ðdxðtÞ=dtÞ is
bounded, since an unbounded ðdxðtÞ=dtÞ will lead to 0�1 (i.e.,
the product of 0 and 1), which is undefined and contradicts

w0ðsÞ ! 0 as s!1. Therefore, _xðtÞ in the system (2) is bounded
as t! tf.

Remark 1 shows that the control input ui(t) in the system (2) is
bounded, although the term ðc=ðtf � tÞÞ in Eq. (2) seems problem-
atic intuitively as t! tf. Note that the numerator cA(t)x(t) and the
denominator tf� t in Eq. (2) both go to zero as t ! tf. Since
cA(t)x(t) exponentially decreases to zero as shown in Theorem 1
while tf� t only linearly decreases to zero, based on L’Hospital’s
rule, it is expected that ui(t) is still bounded as t ! tf. Neverthe-
less, more control actuation is required, if a small tf is assigned.
However, as long as tf> 0 holds strictly, the control actuation will
be bounded as indicated by Remark 1. Future research will focus

on developing a saturated controller to achieve consensus within a
prespecified finite-time frame.

4 Finite-Time Rendezvous With Connectivity

Maintenance

To demonstrate the wide applications of the developed user-
specified finite-time consensus algorithm, an example application
of finite-time rendezvous for a multiagent system is considered
where the agents are required to meet at a common location within
a preset time frame.

4.1 Problem Formulation. A multiagent system composed
of N agents is tasked to achieve rendezvous within a desired time
tf in a workspace F , where F is a bounded disk area with radius
Rw. Each agent is assumed to move with the single-integrator
kinematics

_piðtÞ ¼ uiðtÞ; i ¼ 1;…;N (5)

where piðtÞ¢½ xiðtÞ yiðtÞ �T 2 R2 denotes the position of agent i
with respect to an inertial reference frame in F , and uiðtÞ 2 R2 is
the control input that represents the linear velocity of agent i.

It is assumed that each agent has a limited communication
capability encoded by a disk area with radius R, which implies
that two agents can only exchange information within a
distance of R. The interagent interaction is modeled as an undir-
ected graph GðtÞ ¼ ðV; EðtÞÞ described in Sec. 2.1, where V rep-
resents the group of agents, and the time-varying edge set
EðtÞ ¼ fði; jÞ 2 V � Vjdij � Rg indicates that the links between
agents are established only when their relative distance

dij¢kpi � pjk 2 Rþ is less than R. Let N iðtÞ ¼ fj 2 Vjði; jÞ
2 EðtÞg denote the neighbors of node i, which is a time-varying
set since nodes may enter or leave the communication region of
node i at any time instant. Due to the limited communication
capabilities, agents have to stay close as a connected graph so
that the agents can exchange information and coordinate their
motion to perform rendezvous. To ensure connectivity, an escape
region for each agent i is defined as the outer ring of the commu-
nication area with radius r, R� d< r<R, where d is a predeter-
mined buffer distance. Edges formed with any node j 2 N i in
the escape region are in the danger of breaking. In contrast to
most existing results in rendezvous problems that do not consider
accomplishing the task within a desired time frame, the objective
for the multiagent system is to converge to a common location
within the given time frame tf, while preserving global network
connectivity using local information only (i.e., positions of one-
hop neighbors). To achieve these goals, we assume that the ini-
tial graph Gð0Þ is connected.

4.2 Control Design. Based on the artificial potential field-
based approach (cf. Refs. [7] and [35]), a decentralized potential
function ui : R2N ! ½0; 1� 8i 2 V is developed for rendezvous as

ui ¼
ci

ca
i þ bið Þ1=a

; i 2 V (6)

where a 2 Rþ is a tuning parameter,4 ci : R2N ! Rþ and bi :
R2N ! Rþ are the goal function and the constraint function,
respectively, that only use local position feedback from the neigh-
boring agents.

4The control design in Eq. (5) is based on the framework of navigation functions,
which ensures global convergence to the control objective of achieving rendezvous.
It has been proven in our earlier paper [7] that an appropriate selection of the gain a
ensures ui in Eq. (6) to be a qualified navigation function. Hence, the control gain a
should be selected following the gain condition developed in Ref. [7].
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The goal function in Eq. (6) is designed as

ci ¼
X

j2N i

1

2
kpi � pjk2

(7)

which is minimized when agent i and its neighbors j 2 N i con-
verge to a common position. To preserve network connectivity,
the constraint function bi : R2N ! ½0; 1� in Eq. (6) is designed as

bi ¼
Y

j2N i
bij (8)

by only accounting for neighboring nodes. Particularly, bijðpi; pjÞ :
R2 ! ½0; 1� in Eq. (8) is a continuously differentiable function,
designed as

bij ¼
1;

As3
ij þ Bs2

ij þ Csij þ D;

0;

sij � ðR� dÞ2

ðR� dÞ2 < sij < R2

sij � R2

8>><
>>:

(9)

and the partial derivative of bij with respect to sij is given by

@bij

@sij
¼

0;

3As2
ij þ 2Bsij þ C;

0;

sij � R� dð Þ2

R� dð Þ2 < sij < R2

sij � R2

8>><
>>:

(10)

where A ¼ ð�2=ð R� dð Þ2 � R2Þ3Þ; B ¼ ð3ð R� dð Þ2 þ R2Þ=
ð R� dð Þ2 � R2Þ3Þ, C ¼ ð�6 R� dð Þ2R2=ð R� dð Þ2 � R2Þ3Þ; D ¼
ðR4ð3 R� dð Þ2 � R2Þ=ð R� dð Þ2 � R2Þ3Þ and sij¢kpi � pjk2

denotes the square of the relative distance between node i and j.
The bij in Eq. (9) is designed to preserve connectivity of node
i and its neighbors j 2 N i, which achieves its minimum value
of zero as sij¼R2 and the maximum value of one when

sij � ðR� dÞ2. It is worth pointing out that, for each pair of nodes
ði; jÞ 2 EðtÞ, bij is activated only when node j enters the escape
region of node i and has a potential to break the exiting edge.
When agent j moves in the area that dij � R� d, bij imposes no
constraint on its motion, since ð@bij=@sijÞ ¼ 0 as shown in
Eq. (10).

Since ci and bi in Eq. (6) are guaranteed to not be zero simulta-
neously from their definitions, the potential function ui in Eq. (6)
achieves its minimum of zero when ci¼ 0 and its maximum of
one when bi¼ 0. Based on the potential function in Eq. (6), the
controller of agent i is designed as

ui tð Þ ¼ � ki

tf � t
riui (11)

where ki 2 Rþ denotes a positive control gain for agent i and

riui ¼
@ui

@xi

@ui

@yi

� �T

denotes the gradient of ui with respect

to pi.
LEMMA 3. The controller designed in Eq. (11) ensures that the

connectivity of the communication graph G is preserved when
performing rendezvous.

Proof. The initial graph Gð0Þ is assumed to be connected. If
every existing edge in GðtÞ is preserved for t� 0, the global con-
nectivity will also be preserved. Consider a state p	i for agent i,
where the relative distance between agent i and j 2 N iðtÞ satisfies
dijðp	i ; pjÞ ¼ R, which leads to bijðp	i ; pjÞ ¼ 0 from Eq. (9) and
indicates that the associated edge (i, j) is about to break. From
Eq. (8), bi¼ 0 when bij¼ 0, and the navigation function ui

achieves its maximum value from Eq. (6). Since ui is maximized
at p	i , no open set of initial conditions can be attracted to p	i under
the negative gradient control law designed in Eq. (11). Therefore,
the relative distance between agent i and j is maintained less than

d by Eq. (11), and the associated edge is also maintained. Repeat-
ing this argument for all pairs, every edge in G is maintained. �

THEOREM 2. Given a connected graph GðtÞ, the controller
designed in Eq. (11) ensures rendezvous within the preset time
frame tf, i.e., p1ðtÞ ¼ � � � ¼ pNðtÞ as t! tf.

Proof. From the designed potential function in Eq. (6)

riui ¼
abirici � ciribi

a ca
i þ bið Þ

1
aþ1

(12)

where rici and ribi are bounded in the workspace F from
Eqs. (7) and (8). Using Eqs. (7) and (8), the terms rici and ribi

are determined as

rici ¼
X
j2N i

ðpi � pjÞ (13)

and

ribi ¼
X
j2N i

2
@bij

@sij

� �
�bij pi � pjð Þ (14)

respectively, where �bij¢
Q

l2N i;l6¼jbil.

Substituting Eqs. (13) and (14) into Eq. (12), riui is rewritten
as

riui ¼
X
j2N i

mijðpi � pjÞ (15)

where

mij ¼
abi � 2

@bij

@sij

� �
�bijci

a ca
i þ bið Þ

1
aþ1

(16)

is non-negative and bounded, based on the definitions of ci, bi, a,
�bij, and the fact that ð@bij=@sijÞ � 0 from its definition in Eq. (10).
Using the controller designed in Eqs. (11) and (15) yields the
closed-loop system for each node i as

_pi tð Þ ¼ � ki

tf � t

X
j2N i

mij pi � pjð Þ

which can be rewritten in a compact form as

_p tð Þ ¼ ki

tf � t
p tð Þ 
 I2ð Þp tð Þ (17)

where pðtÞ ¼ ½ pT
1 ; …; pT

N �
T 2 R2N denotes the stacked

vector of pi, I2 is a 2� 2 identity matrix, and the elements of

pðtÞ 2 RN�N are defined as

pikðtÞ ¼

�
X
j2N i

mij; i ¼ k

mik; k 2 N i; i 6¼ k

0; k 62 N i; i 6¼ k

8>>><
>>>:

(18)

Since mij is non-negative from Eq. (16), the off-diagonal
elements of p(t) are positive or zero and its row sums are zero.
Hence, p(t) is a Metzler matrix with zero row sums. Since the
communication graph GðtÞ is proven connected in Lemma 3, it is
clear from Theorem 1 that the consensus is achieved within the
time frame tf, i.e., p1ðtÞ ¼ � � � ¼ pNðtÞ as t ! tf, which indicates
that the group of agents converge to a common setpoint within the
time frame tf. �
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Remark 2. Like most existing results in rendezvous, collision
avoidance among agents is not considered in the present work,
since it conflicts with the objective of meeting at a common set-
point. An alternative to include collision avoidance for
rendezvous problems is to divide the workspace into two areas: a
rendezvous area and a collision-free area. The rendezvous area
could be a user-defined proximity area around the rendezvous
point in which agents are required to perform rendezvous only,
while the collision-free area is an area distant from the rendezvous
point in which agents are navigated toward the rendezvous area
and avoid collision with other agents. In our earlier work [7], a
navigation function-based decentralized controller is developed
for multiagent systems to perform collective tasks with ensured
collision avoidance. The control strategy developed in Ref. [7]
could be extended to navigate the agents toward the rendezvous
point with ensured collision avoidance within the collision-free
area. After entering the rendezvous area, the finite-time

consensus developed in Eq. (11) can then be applied to complete
rendezvous.

Remark 3. Although rendezvous is considered as an example
application in the present work, the developed finite-time consen-
sus framework in Eq. (2) is not limited to rendezvous and is
applicable to various collective tasks to ensure mission accom-
plishment within a desired time frame. For instance, it is well
known that most formation control problems can be formulated as
consensus problems. When modifying the objective function in
Eq. (7) to encode formation control as a consensus problem, the
current result can be straightforwardly extended to perform finite-
time formation control. Since other applications such as flocking
and synchronization can also be formulated as consensus prob-
lems, the developed framework in Eq. (2) is also applicable to
such applications.

4.3 Simulation. To demonstrate the performance of the
developed finite-time consensus in Eq. (11), numerical simulation
is provided for a group of ten mobile agents with the kinematics
in Eq. (5). The agents are required to meet at a common location
with a preset time frame tf ¼ 10 s. The limited communication
zone for each robot is assumed as R¼ 2.5 m and d¼ 0.5 m. The
tuning parameter a in Eq. (6) is selected to be a¼ 1.1. As shown
in Fig. 1, the group of mobile agents is arbitrarily deployed in the
workspace and forms a connected graph, where the squares denote
the initial positions of agents, and the solid lines represent the
interagent communication. The trajectory for each agent is shown
by dots in Fig. 1, which indicates that the group of agents con-
verge to a common setpoint. To demonstrate the preservation of
network connectivity, the evolution of the interagent distance is
plotted in Fig. 2. Note that the interagent distance is maintained
less than the communication radius R¼ 2.5 m, which indicates
that each existing link is maintained and the global connectivity
of the underlying graph is preserved. Since all edges in Fig. 2 con-
verge to zero at the time tf¼ 10 s, the finite-time rendezvous is
accomplished within a preset time frame. The control inputs are
shown in Fig. 3, indicating that the controls are bounded as t! tf.

Fig. 1 The initial graph and trajectories of ten agents. The
squares represent the initial positions of the agents and solid
lines connecting agents indicate the interagent communication.
The trajectory of each agent is represented by dots, which indi-
cates that all agents converge to a common setpoint denoted
by the circle.

Fig. 2 The evolution of interagent distance, which is main-
tained less than the communication radius R 5 2.5 m, indicating
that every existing communication link is preserved when per-
forming rendezvous. Since all edges converge to 0 at tf 5 10 s,
the finite-time rendezvous is completed within the desired time
frame.

Fig. 3 The control input of each agent, which indicates that
the control input is bounded as t fi tf
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5 Conclusion

The finite-time consensus framework is developed in the cur-
rent work to ensure consensus within a desired time frame over a
time-varying graph. The effectiveness of the developed frame-
work is demonstrated via a finite-time rendezvous problem, where
agents with limited communication capabilities are desired to
meet at a common location at a desired time instant, while pre-
serving global network connectivity. Since only single-integrator
kinematics is considered, future work will aim to extend the
current results to agents with more general dynamics such as
higher-order dynamics, Euler–Lagrange dynamics, or mobile
agents with nonholonomic constraints. Additional research will
also focus on improving the system performance by developing
controllers robust to external disturbances and achieving rendez-
vous at a desired destination.
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